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Melnikov function and homoclinic chaos induced by weak perturbations
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The effect of noise on the possible occurrence of chaos in systems with a homoclinic orbit (e.g., the
Duffing equation) was recently considered by Bulsara, Schieve, and Jacobs [Phys. Rev. A 41, 668 (1990)],
and Schieve and Bulsara [Phys. Rev. A 41, 1172 (1990)], who adopted an approach based on a
redefinition of the Melnikov function. We show that this redefinition is unsatisfactory and leads to in-

correct results.

PACS number(s): 05.45.+b, 43.50.+y

Consider the two-dimensional conservation system
X+ f(x)=0, (1)

where f(x) is a nonlinear function of the dynamic vari-
able x (¢) such that Eq. (1) possesses a homoclinic trajec-
tory x.(t). We now introduce on the right-hand side of
Eq. (1) the perturbation €[y cos(wt)—kx(t)], €>0. For €
sufficiently small, the saddle point of Eq. (1) perturbs to a
nearby hyperbolic invariant manifold. The Melnikov
function is related to the separation between the stable
and unstable manifolds (e.g., Arrowsmith [1], p. 172), and
has the expression

M(to,00)= [ “ x,()[y cos(wt +wty+09)— ki, (1)]dt
)

(Wiggins [2], p. 507). Note that in the expression for the
Melnikov function second-order terms are not taken into
account. A clear explanation of the geometric meaning
of t, and 6, is available in Wiggins [2], p. 487. For the
purposes of this Comment it is convenient to keep con-
stant the time ¢, which defines the particular orbit being
considered and vary the angle 8,=w7 (where 7 is a run-
ning parameter with the dimension of time) at which the
Poincaré section is carried out, see Wiggins [2], p. 507.
For additional details, see Simiu, Frey, and Grigoriu [3].
We now consider the perturbation

€[y cos(wt)—kx(t)]+F(¢), (3)

where F(t)=¢y,cos(w;t). The Melnikov function then

becomes
M(10,60,6,)=M(t,,6,)
+f_°°w %,(t)y cos(w,t +wty+0,)dt .
@

For any set of values ¢4,6,,0,, the correction
AM=M(t,,00,6,)—M(ty,6), which accounts for the
effect of the perturbation F(t), involves only the parame-
ters of Eq. (1) and those of the perturbing function
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F(t)/e. In particular, AM does not depend upon the pa-
rameters k, v, or w. Indeed, even if we introduce an
infinite sum or Wiener integral [4] of terms sufficient to
represent the paths of the Langevin noise considered in
Ref. [5] or the white noise in Ref. [6], the correction AM
remains functionally independent both of k and the pa-
rameters of the initial perturbation y cos(wt). This is
essentially because the Melnikov function is a linear func-
tional of the perturbation, and follows from the Melnikov
function’s role as the first term in the perturbative expan-
sion for the Melnikov distance.

We now describe the approach proposed by Bulsara,
Schieve, and Jacobs [5]. A small Langevin perturbation
F(2) is introduced in Eq. (1), so that

X()+f(x)=F(z) . (5)

According to Ref. [5], the introduction of this perturba-
tion causes the original, unperturbed separatrix x(¢) to
shift, giving

x (£)=x,(t)+dx(t) (6)

as the separatrix of the perturbed system (5). Given (6),
the Melnikov function is then redefined by analogy with
Eq. (2), and written (in a slightly different notation) as fol-
lows:

Mb=f_:)t(t)[y cos(wt +60,)—kx(¢)]dt . (7

Equation (7) is obtained by, in effect, considering the sys-
tem perturbed by F(z) as a nominally unperturbed sys-
tem, and applying to it the formalism used in the original
Melnikov approach to the unperturbed system having the
homoclinic trajectory x(z).

Neglecting higher-order terms, the correction AM, to
the redefined Melnikov function is then obtained from
Egs. (7), (6), and (2) as follows:

AM,=—2k [ 7 x()8x(1)dt
+y [ 7 [cos(wt +0,)18% (n)dt —k [ 8x(n)dt .
(8)
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We observe that the correction AM, to the Melnikov
function using the approach of Bulsara et al. depends on
the parameter k and on the parameters ¥ and o, of the
initial perturbation y cos(wt). This unsatisfactory situa-
tion directly contradicts the observation made above that
the change in the Melnikov function depends on neither
k nor the initial perturbation y cos(wt). The redefined
Melnikov function M, is not a linear functional of the
perturbative forces present in the system and cannot
serve as a first-order approximation to the Melnikov dis-
tance.

If it were true that the first-order term in the expres-
sion for the redefined Melnikov function M, vanished on
average, then the second-order terms would, on the aver-
age, indicate the possibility of chaos. For consistency,
though, the second-order terms would have to include
not only those appearing in M, but all second-order
terms contained in the perturbative expansion of the Mel-
nikov distance. This is not done by Bulsara et al. This is
a moot point, however, since as is made clear in the fol-
lowing example, on the average the first-order term in the
Melnikov function does in fact not vanish.

To conclude, it is unjustified to use simple zeros of M,
as in the standard Melnikov analysis, to mark on the
average the transverse intersections of the stable and un-
stable manifolds of the hyperbolic saddle point.

Example. We consider for definiteness the case of the
Duffing oscillator [f(x)= —x +x3] with the perturba-
tion given by Eq. (3), where F(t)/e=v cosw t. We as-
sume that ¥ >0, 7,50 (we do not impose the restriction
v:1>0), and that w,»,; are incommensurate. Following
Wiggins [3] (p. 463) and Wiggins [7] (p. 516), the neces-
sary condition for the occurrence of chaos is

—4k /3+yS(w)+|v7,1S(@,)>0, 9)

where
S(w)=V27wsech(mw/2) . (10)

It is clear that for any given parameters k£ and o, the
presence of the perturbation F(t) lowers the minimum
(threshold) value of ¥ for which the occurrence of chaos
is possible. In the absence of the perturbation F(¢), the
Melnikov criterion is —4k /3+yS(w)>0. Thus, the ad-
dition of the perturbation F(t) represented by the term
|7,1S(@;) in (9) lowers the minimum (threshold) value of
v for which chaos is possible. If, instead of confining
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ourselves to one amplitude y;, we consider an ensemble
of values 7, with zero mean, then the average effect of the
perturbation F(t) is still to lower the threshold for y. This
is because E[|y{|]1>0. Note that with y, chosen to have
zero mean, F(t) is a zero mean process—its spectrum
has all mass at angular frequency »,. We could introduce
more harmonic perturbations sufficient to represent
Langevin noise. Additional perturbative terms can only
on average further lower the threshold. Thus, our argu-
ment does not depend on whether F(¢) is a harmonic
function, a sum of harmonic functions, or, as in Bulsara
et al., weak Langevin noise. In general, noise cannot on
average suppress homoclinic chaos in near-integrable sys-
tems. By contrast, the approach of Bulsara et al. leads
to the result that “the presence of weak Langevin noise in
a dissipative system suppresses, in the mean, homoclinic
behavior that might normally be observed in the noise-
free system” [5].

Numerical simulations. We performed numerical
simulations to verify that noise does not on the average
suppress homoclinic behavior in near-integrable systems.
We considered a harmonically forced Duffing equation
with parameters corresponding to the threshold case
where the Melnikov distance in the system without noise
is zero. In our simulations €k =0.1, ew=1, and
ey =(4k /3)/[V 27w sech(7w /2)]=0.075 301 81, so that
—(4/3)k +yS(w)=0. Noise added to the excitation was
simulated by using the stochastic process representation

N
F(t)=€o(2/N)'?3 cos(wt+¢ro) (11)
k=1

(Shinozuka [8]), where the phase angles ¢, are uniformly
distributed between O and 27, the circular frequencies w;
have probability density p(Q)=g(Q)/(eo )% and g(Q) is
the power spectral density of F(¢). From the form of Eq.
(11), and in view of the results obtained by Wiggins [7] (p.
467), we expect any realization of the stochastic perturba-
tion to cause transverse intersections of the stable and un-
stable manifolds. We verified numerically that this is
indeed the case. To allow replication of our results we
reproduce, as an example, the parameters for one realiza-
tion of the stochastic process F(t) defined by Eq. (11),
with €0 =0.02, N =15 [i.e., the common amplitude of
the harmonics in Eq. (11) is 0.02(2/15)'?
=0.007 302 97], and a band-limited spectrum with con-
stant ordinate in the interval 0<Q <27 and zero ordi-
nate elsewhere:

]
(@@, - . ., @15} ={0.2177,0.6147,0.9834,1.3966, 1.8073,2.1843,2.6103,2.8328 ,
3.4128,3.8018,4.1888,4.5886,5.006,5.3853,6.1843} ,
{(G10:B20r - - - » 150} ={3.0473,2.5509,5.0328,3.9521,0.7979,3.1792,6.1952,3.4808 ,

2.5195,3.3489,1.6888,3.3552,1.7216,3.7384,2.0985} .

We follow in our construction the procedure described by
Wiggins [9] (p. 180). We portray lobe boundaries of por-
tions of the intersecting stable and unstable manifolds at
time t=5X2m/w=107. This corresponds to a phase

l
slice  x(@10F5X27mw,/w,$+5X 270w, /0, . . ., P50+ 5
X2mw,s/@) of the Poincaré map P, generated by the
system’s autonomous counterpart and the global cross

section = {(x,,X5;$1, b2 - ..,P15)|d=¢} through



3192

the autonomous phase space {x,X,;d,¢y, -..,Ps50}
(Wiggins [9]). (Note that ¢=wt + ¢, and ¢,=0.) Since
the excitation is characterized by N +1 frequencies, P,
possesses an N-dimensional normally hyperbolic invari-
ant torus 7, which has (N +1)-dimensional stable and un-
stable local manifolds denoted W3, (7.) and W{ _(7,), re-
spectively. The global stable and unstable manifolds are
defined as

Wir)= U P "[Wi (7],
0

n

I

Wi(r)=

n

Pe[Wiee(Te)] -
0

I Cs8

The torus 7. intersects a plane X(di,d,, ..., 150)
in a wunique point. In this example, for ¢;
=¢;oli =1,2,...,15) this point has coordinates
{ —0.024 207 850 724 634,0.002 384 710 615 867}. The
corresponding eigenvalues A, =0.950370901 161 105,
A;=—1.050307901 161 105 are obtained from the first
variation of the perturbed equations of motion. A,
defines the slope of the local unstable manifold needed to
construct the curves representing the intersection of part
of the global unstable manifold with the time slice for
t=107. For ¢;=¢;,+10X27w; /v (i =1,2,...,15), the
coordinates of the point of intersection of 7, with the cor-
responding plane Y are {—0.024509 650269 781,
0.003 145101332251} and the eigenvalues are
A,=0.950348 854715673, A,=—1.050348 854715 673.
We obtain the curves being sought by intersecting trajec-
tories evolved in forward time from the local unstable
manifold at time ¢t =0 to 107, and in backward time from
the local stable manifold at time ¢ =207 to 107 (recall
that in our case ®=1).

We show curves so constructed in Fig. 1. As expected,
Fig. 1 exhibits intersections between curves belonging to
the stable manifold and those belonging to the unstable
manifold. It follows from the arguments developed ear-
lier that transverse intersections will be caused in our sys-
tem by any realization of a similar stochastic process, re-
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FIG. 1. Sample phase-space slice corresponding to a time
t =107 for the Duffing equation with a stochastic perturbation
given by Eq. (11).

gardless of spectral bandwidth and number of com-
ponents N (see also Ref. [10]).

Conclusions. First, as our example makes clear, the
first-order effect of a noise perturbation F(¢) on the Mel-
nikov function does not vanish on average, as asserted in
Ref. [5]. Second, the redefined Melnikov function M, in-
troduced in Ref. [5] [Eq. (7)] omits the second-order
terms inherent in the original derivation of the Melnikov
distance. Thus, the second-order terms calculated from
Eq. (7) would not reflect the totality of the second-order
effects even if the redefined Melnikov function were
mathematically meaningful. Third, and most important,
the redefined Melnikov function M, is not mathematical-
ly meaningful because it implies that the Melnikov dis-
tance may be referenced with respect to a set of separated
manifolds. In fact, the total Melnikov distance should be
referenced with respect to the homoclinic separatrix of
the unperturbed equation.
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